İlk nesil İslâm matematikçi-astronomları içerisinde yer alan Mâhânî'nin zamanımıza ulaşan az sayıdaki eserinden güçlü ve özgün bir âlim olduğu anlaşılmaktadır. Maḳāle fî maʿrifeti's-semt li-eyyi sâʿa eradte ve fî eyyi mevżiʿ eradte adlı çalışmasında uyguladığı yöntem, daha sonra Bettânî tarafından uygulanan ve küresel trigonometrideki kosinüs formülüne ulaşan yöntemle eşdeğerlidir. Döneminin matematiğinde mevcut temel meselelerle uğraşan Mâhânî, Ömer Hayyâm'a göre, "bir düzlemle bir küreyi hacimleri arasındaki oranı belli iki eşit parçaya bölme" şeklinde ifade edilen Archimedes'in Kitâb fi'l-küre ve'l-üsṭuvâne adlı eserinin ikinci kitabının dördüncü öncülüne cebirsel çözüm bulmaya çalışan ilk İslâm matematikçisidir. Mâhânî bu sorunu x³ + c = ax² şeklinde üçüncü dereceden bir denklem haline getirmiş, fakat çözememiştir ve bu denklem ölümünden sonra onun adıyla tanınmıştır. Ebû Ca'fer el-Hâzin ise koni kesitlerini kullanarak denklemi çözmeyi başarmış, böylece üçüncü dereceden denklemlerin geometrik çözümünün yolunu açmıştır (Resâʾilü'l-Ḫayyâm, s. 1-2, 90-91). Mâhânî, Öklid'in Elementler'inin beşinci kitabına yazdığı şerhte geometrik aritmetiği geliştirmiş, özellikle kesirler üzerinde çalışarak oran-orantı teorisi (nisbet nazariyesi) üzerinde durmuştur. Aynı eserin onuncu kitabının şerhinde ise geometrik irrasyonel sayılar teorisini ele almış ve bu teoriyi cebrik hale getirip geometrik büyüklük (aded-i muttasıl) yerine rasyonel ve irrasyonel sayıları kullanmıştır. Mâhânî, matematiğe yaptığı bu önemli katkısıyla Öklid'in Elementler'inin Hârizmî'nin kurduğu ilmü'l-cebr ve'l-mukābeleyle okunabileceğini ve geometrik sayılar teorisiyle cebrin onun cebir diliyle yeniden yazılabileceğini göstermiş, bu sonuç daha sonra özellikle Kerecî'nin elinde cebrin ilerlemesine ilham kaynağı olmuştur.
Eserleri. 1. Risâle fi'n-nisbe (Süleymaniye Ktp., Cârullah Efendi, nr. 1502/5; Leningrad Or. Institut, nr. A 585; Paris Bibliothèque Nationale, nr. 2467/16). Risâle fi'ş-şekl min emri'n-nisbe (Berlin Staatsbibliothek, nr. 6009) ve Risâle fi'l-müşkil mine'n-nisbe (Bibliothèque Nationale, nr. 2457/39; Tahran Sipehsâlâr Medresesi Ktp., nr. 597) adlarıyla da bilinir; oran-orantı teorisi üzerinedir. 2. Kitâb fî sittetin ve ʿişrîne şeklen mine'l-maḳāleti'l-ûlâ min Öḳlîdis elletî lâ yaḥtâcü min şeyʾ minhâ ile'l-ḫulf. İbnü'n-Nedîm'in zikrettiği eser, Öklid'in Elementler'inin birinci kitabındaki yirmi altı teoremin ispatında "olmayana ergi" (reductio ad absurdum) yöntemine gerek duyulmadığı hakkındadır. 3. Tefsîrü'l-maḳāleti'l-ʿâşire min Kitâbi Öḳlîdis (Bibliothèque Nationale, nr. 2457/39). Öklid'in Elementler'inin irrasyonel sayıların hendesî tahlili olan onuncu kitabı üzerine kaleme alınmış bir şerhtir. 4. Şerḥu'l-maḳāleti'l-ḫâmise min Kitâbi Öḳlîdis. Öklid'in Elementler'inin hendesî sayılar teorisinden bahseden beşinci kitabının şerhi olup İbnü'n-Nedîm tarafından zikredilmiştir. 5. Şerḥu Kitâb fi'l-küre ve'l-üsṭuvâne. Ömer Hayyâm'ın bahsettiği bu çalışma, Archimedes'in Kitâb fi'l-küre ve'l-üsṭuvâne'sinin ikinci kitabının dördüncü öncülü üzerinedir; birkaç varaklık bir bölümü Leiden Universitätsbibliothek'te bulunan esere (Sezgin, V, 130) Kûhî bir şerh yazmıştır (Leiden Universitätsbibliothek, nr. 991). 6. Maḳāle fî maʿrifeti's-semt li-eyyi sâʿa eradte ve fî eyyi mevżiʿ eradte (TSMK, III. Ahmed, nr. 3342/3). Azimutun (güney açısı) tesbitiyle alakalıdır. 7. Taḥrîru Kitâbi Mânâlâvus fî eşkâli'l-küre ve'l-üsṭuvâne. Menelaos'un küreler ve silindirler hakkındaki eserinin ikinci makalesinin onuncu şekline kadar yapılan bir tahrirdir. Aslı kayıp olan Mâhânî'nin tahririni Ebü'l-Fazl Ahmed b. Ebû Saîd el-Herevî gözden geçirmiş ve tamamlamıştır (Leiden, Or., nr. 399/2). Ancak Nasîrüddîn-i Tûsî, kendi tahririnde Mâhânî ile Herevî'nin katkılarını faydasız olarak nitelendirip İbn Irâk'ın aynı eser üzerindeki çalışmasını kullanmıştır. 8. Risâle fî ʿurûḍi'l-kevâkib. İbnü'n-Nedîm ve İbnü'l-Kıftî tarafından zikredilmiştir. Mâhânî ayrıca parabolün alanıyla ilgili bir çalışmasında, parabolün alanını uzun bir yol kullanarak Archimedes'den farklı bir şekilde hesaplayan Sâbit b. Kurre'nin yöntemini dikkate alarak daha kısa bir çözüm vermektedir.
Kaynak: TÜRKİYE DİYANET VAKFI İSLAM ANSİKLOPEDİSİ